Simplify the process of converting hexadecimal values to decimal format with our efficient Hexadecimal to Decimal Converter. This tool allows you to effortlessly convert any hexadecimal value to its equivalent decimal representation. Simply input the hexadecimal value, and our converter will instantly generate the decimal number.

16
10
10
2

Related

## What is Hexadecimal to Decimal converter

To convert a hexadecimal number to decimal, you can follow these steps:

1. Assign decimal values to each hexadecimal digit (0-9, A-F).

• 0: 0
• 1: 1
• 2: 2
• 3: 3
• 4: 4
• 5: 5
• 6: 6
• 7: 7
• 8: 8
• 9: 9
• A: 10
• B: 11
• C: 12
• D: 13
• E: 14
• F: 15
2. Multiply each hexadecimal digit by the corresponding power of 16 based on its position (starting from the rightmost digit).

3. Sum up the results from step 2 to obtain the decimal equivalent.

Here's an example:

Let's say you want to convert the hexadecimal number "1F" to decimal.

1. Assign decimal values to each hexadecimal digit: 1: 1 F: 15

2. Multiply each hexadecimal digit by the corresponding power of 16: 1 * 16^1 = 16 F * 16^0 = 15 * 1 = 15

3. Sum up the results: 16 + 15 = 31

So, the hexadecimal number "1F" is equivalent to the decimal number 31.

You can use online converters or programming libraries to perform hexadecimal to decimal conversions easily.

## How to convert from hex to decimal

A regular decimal number is the sum of the digits multiplied with power of 10.

137 in base 10 is equal to each digit multiplied with its corresponding power of 10:

13710 = 1×102+3×101+7×100 = 100+30+7

Hex numbers are read the same way, but each digit counts power of 16 instead of power of 10.

For hex number with n digits:

dn-1 ... d3 d2 d1 d0

Multiply each digit of the hex number with its corresponding power of 16 and sum:

decimal = dn-1×16n-1 + ... + d3×163 + d2×162 + d1×161+d0×160

### Example #1

3B in base 16 is equal to each digit multiplied with its corresponding 16n:

3B16 = 3×161+11×160 = 48+11 = 5910

### Example #2

E7A9 in base 16 is equal to each digit multiplied with its corresponding 16n:

E7A916 = 14×163+7×162+10×161+9×160 = 57344+1792+160+9 = 5930510

### Example #3

0.8 in base 16:

0.816 = 0×160+8×16-1 = 0+0.5 = 0.510

## Hex to decimal conversion table

Hex
base 16
Decimal
base 10
Calculation
0 0 -
1 1 -
2 2 -
3 3 -
4 4 -
5 5 -
6 6 -
7 7 -
8 8 -
9 9 -
A 10 -
B 11 -
C 12 -
D 13 -
E 14 -
F 15 -
10 16 1×161+0×160 = 16
11 17 1×161+1×160 = 17
12 18 1×161+2×160 = 18
13 19 1×161+3×160 = 19
14 20 1×161+4×160 = 20
15 21 1×161+5×160 = 21
16 22 1×161+6×160 = 22
17 23 1×161+7×160 = 23
18 24 1×161+8×160 = 24
19 25 1×161+9×160 = 25
1A 26 1×161+10×160 = 26
1B 27 1×161+11×160 = 27
1C 28 1×161+12×160 = 28
1D 29 1×161+13×160 = 29
1E 30 1×161+14×160 = 30
1F 31 1×161+15×160 = 31
20 32 2×161+0×160 = 32
30 48 3×161+0×160 = 48
40 64 4×161+0×160 = 64
50 80 5×161+0×160 = 80
60 96 6×161+0×160 = 96
70 112 7×161+0×160 = 112
80 128 8×161+0×160 = 128
90 144 9×161+0×160 = 144
A0 160 10×161+0×160 = 160
B0 176 11×161+0×160 = 176
C0 192 12×161+0×160 = 192
D0 208 13×161+0×160 = 208
E0 224 14×161+0×160 = 224
F0 240 15×161+0×160 = 240
100 256 1×162+0×161+0×160 = 256
200 512 2×162+0×161+0×160 = 512
300 768 3×162+0×161+0×160 = 768
400 1024 4×162+0×161+0×160 = 1024